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Incorporating mechanisms of fluid pressure relaxation
into inclusion-based models of elastic wave velocities

S. Richard Taylor∗ and Rosemary J. Knight‡

ABSTRACT

Our new method incorporates fluid pressure commu-
nication into inclusion-based models of elastic wave ve-
locities in porous rocks by defining effective elastic mod-
uli for fluid-filled inclusions. We illustrate this approach
with two models: (1) flow between nearest-neighbor
pairs of inclusions and (2) flow through a network of
inclusions that communicates fluid pressure throughout
a rock sample. In both models, we assume that pore pres-
sure gradients induce laminar flow through narrow ducts,
and we give expressions for the effective bulk moduli of
inclusions. We compute P-wave velocities and attenua-
tion in a model sandstone and illustrate that the depen-
dence on frequency and water-saturation agrees qualita-
tively with laboratory data. We consider levels of water
saturation from 0 to 100% and all wavelengths much
larger than the scale of material heterogeneity, obtain-
ing near-exact agreement with Gassmann theory at low
frequencies and exact agreement with inclusion-based
models at high frequencies.

INTRODUCTION

Inclusion-based effective medium theory (IBEMT) models
the elastic behavior of heterogeneous systems. In the stan-
dard formulation, the system is represented by hydraulically-
isolated inclusions in a homogeneous background (e.g., Kuster
and Toksöz, 1974; Berryman, 1980a, b; le Ravalec et al., 1996).
With a lack of hydraulic communication between the inclu-
sions, this model cannot account for coupling between elastic
deformation and local fluid flow. As a result, the inclusion-
based approach provides an accurate description of elastic
wave velocities only for the unrelaxed or high-frequency case.
By allowing for complete communication between the inclu-
sions, the relaxed, low-frequency case can be modeled (e.g.,
Endres and Knight, 1997). What is needed, however, is a
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description of elastic behavior from the low frequencies of
seismic data to the high frequencies of laboratory data. Under-
standing this dispersion is necessary for accurately interpreting
P-wave velocities at any given frequency and to relate veloci-
ties measured at laboratory frequencies to those measured at
seismic frequencies.

The dependence of velocity on frequency has been at-
tributed to two different mechanisms: Biot dynamic poroe-
lasticity (Biot, 1956a, b) and local flow (Jones, 1986; Murphy
et al., 1986). Theoretical models using both mechanisms have
been developed by Dutta and Odé (1979), Dvorkin and co-
workers [Dvorkin and Nur, 1993; Dvorkin et al., 1994, and
Endres (1998)]. These models and the complementary exper-
imental observations indicate that local flow is the dominant
mechanism for a wide range of rock types and in-situ conditions
(Endres, 1998).

The local flow mechanism describes fluid pressure commu-
nication in a heterogeneous porous medium in response to an
elastic wave. The initial magnitude of the fluid pressure induced
by the wave will vary spatially due to heterogeneity of the elas-
tic response. With sufficient time to respond, fluid flow equili-
brates the fluid pressures. The pore fluid eventually “relaxes”
and acts elastically as one single effective fluid phase. For a
given length scale of heterogeneity, a characteristic time τ cor-
responds with the relaxation process (le Ravalec et al., 1996),
thereby defining a characteristic frequency ω0= 1/τ . The elas-
tic response is described as relaxed if TÀ τ and unrelaxed if
T¿ τ , where T represents the time-scale of elastic deforma-
tion. The wave frequency ω determines the available response
time, hence the term “low frequency” refers to the relaxed case
and “high frequency” refers to the unrelaxed case.

In the present study, we model dispersion due to local
flow using inclusion-based effective medium theory. Although
inclusion-based modeling requires idealized pore space ge-
ometries (e.g., spheres or ellipsoids), it does describe the fun-
damental processes of elastic wave velocities in porous rocks
(i.e., the elastic deformation of a solid containing fluid-filled
voids). If there is no hydraulic communication between the
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inclusions, however, local flow will not be part of the elastic
response and only the high-frequency, unrelaxed behavior can
be modeled. In order to predict the variation in P-wave ve-
locity with frequency, the inclusion-based approach must be
modified for communication between the inclusions. This has
been done by Endres and Knight (1997) and Xu (1998), al-
lowing prediction in either the fully relaxed or fully unrelaxed
limit. These models are limited and cannot estimate velocities
at intermediate frequencies.

In this work, we use a standard inclusion-based model, but
incorporate fluid pressure communication into the elastic re-
sponse of the inclusions by defining a frequency-dependent
effective bulk modulus for each inclusion. This approach has
the advantage that once the effective moduli of the inclusions
have been estimated, an IBEMT can be used to estimate the
effective elastic moduli and wave velocities. We model P-wave
velocity for the range of frequencies accessible to effective-
medium theory: from the low- or zero-frequency limit, up to
frequencies where the wavelength becomes comparable to the
length scale of heterogeneity. We consider only media that are
isotropic with respect to elastic wave propagation.

Our central objective is to illustrate that inclusion-based
models can be modified to predict frequency-dependent be-
havior. The accuracy of our approach depends on the local flow
model used to estimate the effective moduli of inclusions; we
show two simple models to validate the approach. We first de-
scribe pore-scale fluid pressure communication using a model
that considers only communication with the nearest neigh-
boring pore via laminar (Poiseuille) flow. We then consider
a more sophisticated model using a network of pores. Even
with these simple models, we obtain results that agree exactly
with previous unrelaxed (high-frequency) inclusion-based re-
sults (Berryman, 1980a, b), and that agree very well with low-
frequency Gassmann theory (Gassmann, 1951).

A PORE-TO-PORE RELAXATION MODEL

Model development

To estimate the effective moduli of a fluid-filled inclusion
requires a model of pore-scale fluid pressure communication.
As a simple model of this communication, consider the case of
two inclusions, each containing a single fluid phase, connected
by a narrow duct. Fluid can flow through the duct in response
to a pressure gradient. We model the volumetric flow rate q
between the inclusions by

q = γ (p1 − p2), (1)

where γ is the fluid conductivity (a function of the duct geom-
etry and the fluid in the duct) and p1, p2 are the fluid pressures
in the respective inclusions. Differences in the induced fluid
pressures in the inclusions can be caused either by a differ-
ence in compliance of the fluids or by a difference in geometric
compliance of the inclusions.

Assuming steady laminar (Poiseuille) flow and approximat-
ing the duct as a cylinder of radius r and length L containing
a Newtonian fluid with viscosity η, γ is determined by (e.g.,
White, 1986, 305)

γ = πr 4

8ηL
. (2)

For pressure relaxation between neighboring pores, the param-
eter L is the length scale of fluid pressure heterogeneity. For
simplicity, we assume that the flow is not influenced by entrance
and exit effects. We also assume that the duct radius is suffi-
ciently small that flow develops fully on a time scale shorter
than the wave period [Biot (1956b) derived the more general
frequency-dependent version of equation (4) that treats the
general case]. We further assume that only a single fluid phase
occupies the duct. This is reasonable because of the affinity of
wetting fluids for the smallest regions of the pore-space.

Using this local flow model, we derive in Appendix A the
following expression for the effective bulk modulus κ∗1 for
inclusion 1:

κ∗1 =
κ̃ + i

ω

ω0
κ1

1+ i
ω

ω0

(3)

whereω is angular frequency,ω0 is the characteristic relaxation
frequency, and κ1 is the bulk modulus of the fluid in inclusion 1.
Here κ̃ is

κ̃ = P1V1 + P2V2

P1

(
V1

κ1
+ V2

κ2

)
+ V2

κb
(P2 − P1)

, (4)

where the quantities Pi [defined in Berryman (1980b)] account
for the effects of inclusion geometries, the Vi s are the inclusion
volumes, κ2 is the bulk modulus of the fluid in inclusion 2, and
κb is the matrix bulk modulus. The relaxation frequency ω0 is

ω0 = γ

V1V2

[
κ1κ2

κb − κ2 + P2κ2

]
×
[
κb

(
V1

κ1
+ V2

κ2

)
+ V2

(
P2

P1
− 1

)]
, (5)

which defines the time-scale of relaxation, τ ∼ 1/ω0. Note that
equation (3) describes the effective bulk modulus of the fluid
component only. It does not include coupling with the stiffness
of the dry (empty) pore, as the reader might have anticipated.
Rather, applying an IBEMT [in which equation (3) models
one of the medium’s constituents] accounts for this geometrical
effect. Although our model can account for a distribution of
pore geometries, for simplicity we consider the case where all
inclusions have the same geometry (i.e., P1= P2). The reduced
forms of equations (4)–(5) for this case are given in Appendix B.

Figure 1 shows a plot of the real and imaginary parts of κ∗1 /κ1

versus ω/ω0 for the particular case of spherical inclusions. We
have set κ2/κ1= 0.1 (i.e., inclusion 2 is filled with a fluid that is
much more compressible than that in inclusion 1). As expected,
in the high-frequency, unrelaxed limit, we have κ∗1 = κ1 (i.e., the
elastic response is unmodified by hydraulic communication). In
the low-frequency limit where the fluid pressure is equal in the
two inclusions, κ∗1 = κ̃ . The behavior exhibited in Figure 1 is
typical of viscous relaxation mechanisms (Mavko et al., 1998,
197), showing a distinct transition from low-frequency to high-
frequency behavior, and a characteristic frequency ω0 separat-
ing these regimes. Near ω0, viscous dissipation (represented by
the imaginary part of κ∗1 ) has a characteristic peak, correspond-
ing to a maximum (near 45◦) of the phase angle by which the
pressure in the pore leads the dilatation.

While it is conventionally assumed that fluids do not con-
tribute to the shear stiffness of a porous composite, viscous
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shear flow does contribute to elastic dissipation. Following
Berryman (1980a, b), we account for this by using the expres-
sionµ∗ = iωη for the effective shear modulusµ∗ of an inclusion
filled with fluid of viscosity η. This expression is based on fully
developed shear flow under sinusoidal deformation. The fact
that µ∗ is purely imaginary reflects the purely viscous (i.e., in-
elastic) role of the fluid.

Using expression (3) for the effective moduli of two con-
nected inclusions, we now consider a model porous medium
containing a large number of inclusions. An important pa-
rameter in the description of fluid pressure communication
is the interpore distance L which enters through γ . In a re-
alistic porous medium represented by inclusions distributed
randomly throughout a background matrix, L has a different
value for every pair of inclusions. We therefore treat L as a
random variable described by a probability distribution.

In Appendix C, we derive the probability density P(R) of the
distance R between centers of inclusions of any size or shape,
distributed randomly with number density n (inclusions per
unit volume). We obtain

P(R) = 4πnR2 exp
(− 4

3πnR3). (6)

The parameter L is obtained by subtracting the size of the
inclusions from R. Having determined the probability distri-
bution of L , the distribution of effective bulk moduli of the
inclusions follows directly from the relationship between L
and κ∗1 given by equations (2)–(5). The distribution of effec-
tive moduli is incorporated into the IBEMT via the weights ci

in equations (29)–(30) of Berryman (1980b).
In our model, we assume that each inclusion is filled with

either water or air, and that any water-filled inclusion commu-
nicates only with the nearest gas-filled inclusion. Thus, we used
equation (6) with n= ng, the number density of gas-filled pores,
to compute the distances to gas-filled inclusions. [If the water
saturation is Sw , then ng= (1− Sw)n.] The effect of saturation
on the distance from a given water-filled inclusion to its nearest
gas-filled neighbor is illustrated in Figure 2 by a graph of P(R)

FIG. 1. Graphs of the real (solid) and imaginary (dashed) parts
of the normalized effective bulk modulus κ∗1 /κ1 versus ω/ω0 as
given by the pore-to-pore relaxation model [equation (3)], for
hydraulic communication with an inclusion containing a very
compressible fluid (κ2/κ1= 0.1).

for various values of ng corresponding to different levels of sat-
uration. This figure illustrates the expected behavior: that R,
and hence L , becomes larger as water saturation is increased.
It also illustrates that L becomes more broadly distributed with
increasing saturation. This suggests that accounting for the ran-
dom distribution of L becomes more important at higher levels
of water saturation.

Modeling results and discussion

Using the model described above, we compute effective elas-
tic moduli and wave velocities over a range of frequencies and
levels of saturation for a “model sandstone.” Our model sand-
stone is composed of water- and air-filled spherical inclusions
in a solid quartz matrix. Data describing the physical prop-
erties of the constituent materials are given in Table 1; other
parameters used in the model are given in Table 2. The elastic P-
wave velocity and quality factor (vp and Q−1

p , respectively) for
the model sandstone were computed using [Berryman, 1980b,
equation (48)],

Table 1. Physical properties of the constituents of a model
sandstone.

Solid Grains
(Quartz)1 Water2 Gas2

Bulk modulus, κ [Pa] 37 × 109 2.4 × 109 0.02 × 109

Shear modulus, µ [Pa] 44 × 109 0 0
density, ρ [kg/m3] 2.65 × 103 1.0 × 103 100

1From Mavko et al. (1998, p. 307).
2From Dutta and Odé (1979).

Table 2. Parameters used to quantify the pore space and
hydraulic properties of a model sandstone.

Parameter Numerical Value

Porosity, φ 0.25
Inclusion radius, a 100 µm
Inclusion volume, V = 4

3πa3 0.0042 mm3

Inclusion number density, n = φ/V 36 mm−3

Water viscosity, η 10−3 Pa · s
Duct radius, r 2.0 µm

FIG. 2. Probability distribution [from equation (6)] of the dis-
tance, R, from the center of a given water-filled inclusion to
the center of its nearest gas-filled neighbor, for various levels
of water saturation, Sw .
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1
vp

(
1− i

2
Q−1

p

)
=

 ρ

κeff + 4
3
µeff


1/2

, (7)

where κeff and µeff are the computed (complex-valued) bulk
and shear moduli of the composite, and ρ is the average density
of the sample.

The resulting graphs of vp versus Sw , at various frequen-
cies are presented in Figure 3. The Gassmann curve was com-
puted by first using the conventional inclusion-based model
to compute the dry-frame bulk modulus κd and then applying
Gassmann’s equation,

κeff = κd + α2

φ

κ f
+ α − φ

κs

(8)

to compute the effective bulk modulusκeff of the fluid-saturated
sample. Here, κs is the bulk modulus of the solid mineral ma-
terial (e.g., quartz), and α≡ 1− κd/κs is typically termed the
“poroelastic parameter.” Because the pressure is equilibrated
between the fluids, the bulk modulus κ f of the effective fluid
phase is given by the Reuss average,

1
κ f
= Sw
κw
+ 1− Sw

κg
, (9)

where κw and κg are the bulk moduli of the liquid and gas
phases, respectively, and Sw is the liquid saturation. The con-
ventional assumption of the Gassmann approach (that the
shear modulus of the fluid-saturated composite is equal to dry-
frame modulus) was used.

The high-frequency limit curve plotted in Figure 3 coincides
with the result that would have been obtained if the IBEMT
calculation had been performed with no fluid pressure com-
munication between inclusions. As the frequency is decreased,
allowing pore-to-pore relaxation of fluid pressure to occur, the
composite becomes more compliant and the P-wave velocity

FIG. 3. Computed P-wave velocity, vp, versus water saturation,
Sw , for a model sandstone, as given by the pore-to-pore relax-
ation model. The solid curves correspond to each of the wave
frequencies 102.5, 103, 103.5, 104, 104.5, and 105 Hz. For com-
parison, the velocities predicted by Gassmann’s equation are
plotted as the dashed curve.

correspondingly decreases. Note that in the low-frequency
limit, where fluid pressures are equilibrated, the computed vp

versus Sw curve agrees closely with the low-frequency curve
computed using Gassmann’s equation. The cause of the dis-
crepancy is that in the Gassmann formulation the fluid pres-
sure is equilibrated throughout the pore space, whereas in the
present model it is equilibrated only between pairs of inclu-
sions (so that fluid pressures can be more relaxed in the low-
frequency limit than would otherwise be possible). The velocity
is frequency independent at 0 and 100% saturation because
the pore fluid is homogeneous and therefore no pressure gra-
dients arise that would cause flow. We present in Figure 4
the same data plotted in Figure 3, but as P-wave velocity vs.
frequency.

The graph of Q−1
p versus Sw resulting from the same simula-

tion is presented in Figure 5; curves are plotted for three dif-
ferent frequencies between the high- and low-frequency limits.
The qualitative features of each curve are similar, with a loss
peak that occurs at a higher saturation as the wave frequency

FIG. 4. Computed P-wave velocity, vp, versus wave frequency,
f , as given by the pore-to-pore relaxation model for a model
sandstone, at various levels of water saturation, Sw . These are
the same data as plotted in Figure 3, but emphasize the velocity
dispersion introduced by allowing for fluid pressure communi-
cation in the IBEMT.

FIG. 5. Computed P-wave quality factor, Q−1
p , versus water sat-

uration, Sw , for a model sandstone, as given by the pore-to-pore
relaxation model.
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is decreased. This peak occurs at the saturation at which the
distance over which a given water-filled inclusion must relax
is such as to maximize the viscous loss over a wave cycle. As
demonstrated in Figure 1, this occurs when the time scale of
pressure relaxation is of the same order as the time scale of elas-
tic deformation. The Q−1

p versus Sw curves shown in Figure 5
are identical in form to the laboratory measurements shown in
Figure 6 of Murphy et al. (1986), and are of the same order of
magnitude.

Figure 6 shows Q−1
p versus frequency at various levels of

saturation. The behavior exhibited in this figure is typical of
viscous relaxation phenomena. There is a broad attenuation
peak centered about the relaxation frequency of the pore-to-
pore relaxation mechanism, with attenuation tailing off to zero
in the low- and high-frequency limits. Because the time scale of
pressure relaxation increases with saturation (due to the fact
that the pressures in individual water-filled inclusions must re-
lax over greater distances to their nearest gas-filled inclusion),
the attenuation peak shifts significantly toward lower frequen-
cies with increasing saturation.

AN EXPLICIT PORE NETWORK MODEL

The principal failing of the pore-to-pore relaxation model
developed in the previous section is the assumption that each
inclusion is hydraulically connected to only one other inclu-
sion, whereas real porous medium inclusions are multiply con-
nected. Consequently, the model underestimates the perme-
ability of the medium and the degree of pore-pressure relax-
ation that occurs at a given frequency. This limitation accounts
for the discrepancy between the computed and low-frequency
Gassmann predictions. An additional factor that cannot be ac-
counted for is the role of pore-scale or sample-scale fluid distri-
bution. Knight and Nolen-Hoeksema (1990) and Cadoret et al.
(1995) provide experimental evidence for the stiffening effect
of heterogeneous fluid distribution on elastic moduli. The sim-
ple pore-to-pore relaxation model does not provide a means
of incorporating such effects into the relaxation dynamics.

FIG. 6. Computed P-wave quality factor, Q−1
p , versus wave fre-

quency, f , as given by the pore-to-pore relaxation model for
a model sandstone at various levels of water saturation, Sw .
These are the same data as plotted in Figure 5, but empha-
size the dispersion introduced by allowing for fluid pressure
communication.

In order to model more accurately the frequency and sat-
uration dependence of elastic wave velocities, we develop a
relaxation model for a network of inclusions. In this system,
each inclusion is hydraulically connected to any number of its
neighboring inclusions, thus forming a hydraulically connected
network. As in the previous model, we assume Poiseuille flow
through the ducts in response to pressure gradients, such that
the volumetric flow rate qi j from inclusion i to inclusion j is
given by

qi j = γi j (pi − pj ). (10)

The fluid conductivity γi j (i , j = 1, . . . ,n) is a function of the
geometry of the duct, and for the case of a cylindrical duct is
given by equation (2), under assumptions discussed in the pre-
vious section. In Appendix D, we derive the expression for the
vector κ∗ of effective moduli of every inclusion in the medium,
under the simplifying assumption that all inclusions have the
same shape. We obtain

κ∗ =

I+ 1
iω


κ1/V1 0 . . .

0 κ2/V2 . . .

...
...

. . .

G


−1

κ, (11)

where I is the identity matrix, the matrix G contains informa-
tion about the hydraulic connections between pairs of inclu-
sions, κ is the vector (κ1, . . . ,κn) of elastic moduli of fluids
contained in the inclusions, and Vi is the volume of the i th
inclusion.

Equation (11) merely generalizes equation (3) to the case of
a multiply-connected pore space. In the high-frequency limit,
it reduces to κ∗ =κ, indicating as expected that communica-
tion between inclusions no longer plays a role at sufficiently
high frequencies, and we recover the usual assumption of hy-
draulically isolated inclusions. As in the previous section, we
use the expression µ∗ = iωη for the effective shear modulus of
fluid-filled inclusions to account for dissipation due to shear
deformation of the fluid.

Modeling results and discussion

We compute effective bulk moduli and shear moduli for in-
clusions, as described above, and use Berryman’s IBEMT to
compute elastic wave velocities for the composite. We present
in Figure 7 graphs of P-wave velocity, vp, versus water satura-
tion, Sw , at various frequencies for a model sandstone. The pore
network was constructed by placing n= 250 spherical inclu-
sions randomly within a solid sphere with the appropriate vol-
ume to generate a sample with the desired porosity, and placing
a cylindrical duct between each inclusion and its three nearest
neighboring inclusions (we assume that the ducts themselves
contribute negligible porosity). The parameters describing the
relevant dimensions and physical properties of the model sand-
stone are again as given in Tables 1 and 2. Saturation was var-
ied by starting with all inclusions gas filled and randomly filling
individual inclusions with water. Because the number of in-
clusions, n, in the conceptual sample is finite, the effects of
increasing in saturation are discrete; hence the curves plotted
in Figure 7 are not smooth. Increasing n smoothes the curves
without significant quantitative change and at great computa-
tional cost [because of the matrix inversion in equation (11)].
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We found n= 250 to be a satisfactory compromise between
smoothness, accuracy, and computation time.

As expected, the high-frequency vp versus Sw curve shown in
Figure 7 reproduces the curve that would have been computed
if an IBEMT without pore-pressure communication had been
used. We also note that we obtain very close agreement with
the Gassmann prediction in the low-frequency limit. However,
the main improvement in this model over the simple pore-to-
pore relaxation model is that the interconnectedness of the
pore space is treated explicitly. Therefore, we expect that the
details of the frequency dependence of vp will be more realistic
than that predicted with the previous model. Furthermore, this
model is also suitable for investigating the effects of macro-
scopic fluid distribution, as explicit control is available over
which inclusions are filled with which fluids.

In Figure 8 can be seen the details of the frequency-
dependence of P-wave velocity for this model sandstone. This

FIG. 7. Computed P-wave velocity, vp, versus water saturation,
Sw , for a model sandstone, as given by the pore-network relax-
ation model. The solid curves correspond to each of the wave
frequencies 102, 103, 104, 105, and 106 Hz. For comparison, the
velocities predicted by Gassmann’s equation are plotted as the
dashed curve.

FIG. 8. Computed P-wave velocity, vp, versus wave frequency,
f , as given by the pore-network relaxation model for a model
sandstone at 80% water saturation. The corresponding curve
from Figure 4 is plotted as the dashed curve for comparison.

figure shows a graph of vp versus frequency for the saturation
level Sw = 0.8. For comparison, this figure also shows the cor-
responding curve from Figure 4. Figure 8 exhibits qualitative
similarities with Figure 4, with the expected asymptotic lim-
its for both high and low frequencies, and with a transition
from low to high frequency occurring about a characteristic
relaxation frequency, ω0. [We see from equation (11) that a
precise definition of ω0 would be a complicated expression in-
volving the matrix norm of G, but is on the order of the typical
term γi j κi /Vi .] However, this figure differs substantially from
Figure 4 in that the transition occurs over a much wider range of
frequencies (over three decades of frequency rather than two)
and is less symmetric about the central relaxation frequency.

CONCLUSION

Our approach incorporates fluid relaxation into the constitu-
tive elastic relations for individual inclusions. The response of
a fluid-filled inclusion to sinusoidal deformation, including the
effects of hydraulic connectivity of the pore space, is thereby
represented entirely in the effective elastic moduli. To this end,
we have developed explicit illustrative models of the relaxation
process and used these models to derive frequency-dependent
expressions for the effective moduli. The strength of this ap-
proach is that it lends itself to the development of more accu-
rate models through the use of more sophisticated models of
local flow (such was not our purpose here), without altering
the proposed modeling framework.

For the models that we have considered, we have illustrated
that our approach reproduces the previous inclusion-based ve-
locity estimates in the high-frequency (unrelaxed) limit. More
importantly, we have shown that in the low-frequency limit
our results are consistent with (though not identical to) the
Gassmann theory, where complete fluid pressure equilibration
is assumed. In principle, equivalence with the Gassmann theory
will be attained with a relaxation model that allows for equili-
bration of fluid pressures throughout the entire pore space at
sufficiently low frequencies.

Of the two relaxation models we present, we consider the
pore network model to be the most accurate and versatile. The
effects of the random distribution of duct lengths, incorporated
in an ad hoc manner into the pore-to-pore model, arise natu-
rally in the construction of the inclusion network and need not
be considered explicitly. The effects of long-range pore pres-
sure communication are also accommodated, as illustrated by
the correspondence of our velocity estimates with those of the
Gassmann theory. Although not addressed in this study, the
pore network model could be applied to systems in which the
fluids are distributed in clusters or “patches” of inclusions.

While the pore network model is more general, it has the as-
sociated disadvantage that many pore-scale parameters must
be supplied explicitly in any particular realization of the model.
Another disadvantage of the network model is the increased
computational cost associated with populating and inverting
a large matrix. This is perhaps out of proportion with the de-
gree of generality the model achieves. A related issue is that,
owing to the complexity of the analytical results, they are less
amenable to qualitative interpretation.

The inclusion-based models developed here retain the
difficulty inherent in all effective medium theories: strong
nonuniqueness in the prediction and interpretation of velocity
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data. The number of model parameters (e.g., the geometry of
inclusions and the parameters governing local flow) that are
unknown makes it possible to reproduce any observed char-
acteristic frequency and limiting velocities. The inverse prob-
lem of using our IBEMT approach to infer rock properties
from measurements of velocity dispersion is therefore under-
determined. However, rather than a weakness of the effec-
tive medium approach, this reflects a fundamental difficulty
that is due to the large number of variables on which elas-
tic wave velocities depend. Although our introduction of local
flow models into effective medium theory increases the prob-
lem of nonuniqueness by introducing extra free parameters,
this is an unavoidable consequence of the tradeoff between
the precision of the model and its accuracy in accounting for
the relevant physics.

Inclusion-based effective medium theory is well-established
as an effective means of modeling the physics associated with
wave propagation in heterogeneous systems. By defining the
elastic response of the inclusions in terms of complex mod-
uli, we have shown that it is possible to incorporate relaxation
mechanisms in the inclusion-based approach. With this mod-
ification IBEMT can be used to develop an improved under-
standing of the link between high-frequency and low frequency
velocity measurements. This is a critical issue in determining
how best to use the information obtained from laboratory stud-
ies in the interpretation of field seismic data.
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APPENDIX A

EFFECTIVE BULK MODULUS FOR PORE-TO-PORE RELAXATION

We consider two fluid-filled inclusions, with volumes V1 and
V2, filled with fluids having bulk moduli κ1 and κ2, respectively.
We take the inclusions to be imbedded in an infinite back-
ground medium subjected to an externally applied incremen-
tal dilatation dθ A at infinity. The following result derived by
Endres and Knight (1997),

dθi + dpi

κb
=
(

dθ A + dpi

κb

)
P(κb, µb, κi , µi , α), (A-1)

relates the incremental dilatation dθ i of inclusion i to dθ A and
the incremental change in fluid pressure dpi in the inclusion
(i = 1, 2). The terms κb, µb are the bulk and shear moduli of
the background medium, respectively. The quantities P(κb,µb,
κi , µi , α)≡ Pi are identical to the P∗i defined in Berryman
(1980b), and account for the effects of inclusion geometry via
the aspect ratio α. We take the shear moduli µi of the fluids to
be zero.

If q is the instantaneous volumetric flow rate of fluid from
inclusion 1 to inclusion 2, then the pressure increments dpi in
the fluids are given by the following relations,

dp1 = −κ1

(
dθ1 + q

V1
dt

)
dp2 = −κ2

(
dθ2 − q

V2
dt

)
, (A-2)

which follow directly from the constitutive elastic relations for
the fluids. We assume that q can be written in the form

q = γ (p1 − p2), (A-3)

where γ is the fluid conductivity between the inclusions.
Assuming a time dependence of the form eiωt for the quan-

tities θ A, θ1, θ2, p1, and p2, equations (A-1)–(A-3) can be
combined to relate the fluid pressure p1 in inclusion 1 to its
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dilatation θ1. This yields an expression of the form

p1 = −κ∗θ1, (A-4)

which defines the effective bulk modulus κ∗1 of the inclusion
material. We obtain

κ∗1 =
κ̃ + i

ω

ω0
κ1

1+ i
ω

ω0

, (A-5)

where κ̃ is given by

κ̃ = P1V1 + P2V2

P1

(
V1

κ1
+ V2

κ2

)
+ V2

κb
(P2 − P1)

, (A-6)

and the characteristic frequency ω0 is given by

ω0 = γ

V1V2

[
κ1κ2

κb − κ2 + P2κ2

]
×
[
κb

(
V1

κ1
+ V2

κ2

)
+ V2

(
P2

P1
− 1

)]
, (A-7)

APPENDIX B

EFFECTIVE BULK MODULI FOR INCLUSIONS WITH IDENTICAL GEOMETRY

If we make the simplifying assumption that P1= P2 (i.e., if
both inclusions have the same shape), we can rewrite equations
(A-6) and (A-7) in the form

1
κ̃
= V1/(V1 + V2)

κ1
+ V2/(V1 + V2)

κ2
, (B-1)

ω0 = γ
κ1

V1
+ κ2

V2

1+ κ2

κb
(P1 − 1)

. (B-2)

In this case, we see that the low-frequency limit κ̃ of κ∗1 is
just the volumetric Reuss average of the bulk moduli κ1 and

κ2. This is the expected behavior when the fluid pressures are
equal in both inclusions (i.e., complete pressure communica-
tion). Since we consider fluid-filled inclusions in a solid matrix,
we assume that κ2¿ κb, so that to a good approximation we
can write equation (B-2) as

ω0 ≈ γ
(
κ1

V1
+ κ2

V2

)
. (B-3)

Note that equations (B-1) and (B-3) are exactly what would
have been obtained if we had assumed in Appendix A that
θ1= θ2 and used only equations (A-2) and (A-3) to derive the
expression for κ∗1 . This observation is used as a simplifying as-
sumption in our development of the pore network model.

APPENDIX C

PROBABILITY DISTRIBUTION OF DISTANCES BETWEEN INCLUSIONS

Let Ä denote an arbitrary region of volume V in a porous
medium. Let N points (the centers of inclusions) be chosen ran-
domly with uniform distribution overÄ, and define the random
variable r to be the distance from a given point x0 in Ä to the
nearest of these points. Denote by Ä0 the sphere of radius R
and volume V0(R) centered at x0.

Defining the distribution function F(R)≡℘(r ≤ R)= “the
probability that r ≤ R”, we then have

F(R) = ℘ (there is at least one point inÄ0)

= 1− ℘ (all N points are outsideÄ0)

= 1−
(

V − V0(R)
V

)N

. (C-1)

Defining n≡ N/V (the number density of inclusions), we can
write

F(R) = 1−
(

1− nV0(R)
N

)N

. (C-2)

We are interested in the limiting case where the size of Ä is
much greater than the typical distance r , so we let N→∞ and
V→∞ in equation (C-2) with n held fixed to yield

F(R)= 1− exp(−nV0(R))= 1− exp
( 4

3πnR3). (C-3)

Denoting the density of r by P(R), so that F(R)= ∫ R
0 P(s)ds,

we then arrive at

P(R) = F ′(R) = 4πnR2 exp
( 4

3πnR3) (C-4)

APPENDIX D

EFFECTIVE BULK MODULI FOR PORE THE NETWORK MODEL

Here, we consider effective bulk moduli for a network of
N fluid-filled inclusions, allowing each inclusion to have fluid
pressure communication with any number of its neighboring
inclusions. To simplify our development, we assume that all
inclusions have the same shape, so that by our observation in
Appendix B we can assume that all inclusions undergo the
same volumetric dilatation θ (this assumption is easily relaxed,
at some expense in complexity of notation).

If qi j is the instantaneous volumetric flow rate from inclusion
i to inclusion j , then the differential equations analogous to
equation (A-2) are

dpi

dt
= −κi

(
dθ

dt
+ qim + qim + · · ·

Vi

)
, (D-1)

i = 1, 2, . . . , N, where m, n, . . . are the indices of the inclusions
to which inclusion i is hydraulically connected, κi is the bulk
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modulus of the fluid in the inclusion, and Vi is the inclusion’s
volume. Again we assume that the qi j can be written in the
form

qi j = γi j (pi − pj ), (D-2)

where γi j is the hydraulic conductivity between inclusion i and
inclusion j (inclusions that are not directly connected have
γi j = 0; we take γi i = 0 for all i ). Assuming a time dependence
of the form eiωt for the quantities pi , pj , . . . and θ , we can rewrite
equation (D-1) as

iωpi = −iωκi θ − κi

Vi

N∑
j=1

γi j (pi − pj ). (D-3)

To simplify our notation, we define quantities γ ∗i by

γ ∗i =
N∑

j=1

γi j , (D-4)

and the matrix G by

G =


γ ∗1 −γ12 · · · −γi N

−γ21 γ ∗2 · · · −γ2N

. . . . . . . . . . . . . . . . . . . . . . . .

γN1 −γN2 · · · γ ∗N

 . (D-5)

(Note that G is a symmetric matrix, since γi j = γ j i .) Defining
vectors of pore pressures and pore fluid bulk moduli by

P =


p1

p2
...

 , and κ =


κ1

κ2
...

 , (D-6)

we can write equations (D-3) as

iωp = −iωκθ −


κ1/V1 0 . . .

0 κ2/V2 . . .

...
...

. . .

Gp. (D-7)

We can then rewrite equation (D-7) in the form

p = −κ∗θ, (D-8)

which defines the vector of effective bulk moduli κ∗ for the
inclusion materials in all N inclusions. Thus we obtain

κ∗ =

I+ 1
iω


κ1/V1 0 . . .

0 κ2/V2 . . .

...
...

. . .

G


−1

κ, (D-9)

where I is the N× N identity matrix.


